№12|2011

НОВЫЕ ТЕХНОЛОГИИ И ОБОРУДОВАНИЕ

bbk 000000

УДК 628.35:62-278

Губанов Л. Н., Катраева И. В., Розенвинкель Карл-Хайнц, Борхман Аксель, Колпаков М. В., Кузина Ю. С.

Керамические мембраны в качестве погружных модулей в мембранных биореакторах

Аннотация

Приводятся результаты лабораторных испытаний плоских и трубчатых керамических мембран с целью использования их в качестве погружных модулей в мембранных биореакторах. Исследования проводились с применением плоских керамических мембран немецкой фирмы «ItN Nanovation» и трубчатых мембран РХТУ им. Д. И. Менделеева. Установлено, что для работы в среде с активным илом можно рекомендовать мембраны с размером пор 200 нм, при этом рабочее трансмембранное давление должно быть не менее –0,3 бар.

Ключевые слова

, , ,

Скачать статью в журнальной верстке (PDF)

Исследования по изучению работы керамических мембран в среде с активным илом с целью использования их в качестве погружных модулей в мембранных биореакторах проводились Институтом водного хозяйства населенных пунктов и переработки отходов (ISAH) Ганноверского университета совместно с Нижегородским государственным архитектурно-строительным университетом в рамках реализации проекта «Подготовка промышленной сточной воды до показателей технической воды с помощью анаэробной и мембранной техники» [1].

Выбор керамических мембран был обусловлен их химической и термической стойкостью, устойчивостью к изменениям давления, рН среды и долговечностью. Для эксперимента использовали плоские керамические мембраны низкого давления немецкой фирмы «ItN Nanovation», характеристика которых представлена в табл. 1 и 2. На рис. 1 показано, как организована работа погружной мембраны фирмы «ItN Nanovation» в лабораторном мембранном биореакторе.

12_07_tabl_01

Известно, что работа мембранных модулей в мембранных биореакторах и величина удельного потока фильтрата J, л/(ч·м2) зависят от следующих основных факторов: материала мембран, размера их пор и толщины активного слоя, температуры среды, концентрации активного ила в системе, рН, трансмембранного давления, эффективности удаления загрязнений с поверхности мембран [2].

В ходе исследований изучалась работа мембран «ItN Nanovation» в дистиллированной воде и в среде с активным илом с дозой 6 г/л при различном давлении и постоянной температуре 21°С. Мембраны работали в следующем режиме: продолжительность фильтрации 120 с, продолжительность обратной промывки фильтратом 20 с, площадь поверхности фильтрования 0,1 м2. После проведения каждого эксперимента осуществляли химическую промывку мембран с использованием лимонной кислоты и NaOH.

12_07_tabl_02

12_07_ris_01

Первоначально новые мембраны испытывались на дистиллированной воде (рис. 2, а) при различном давлении разрежения. Было установлено, что мембраны с размером пор 80 нм и толщиной активного слоя 15 мкм, 200 нм (40 мкм) и 200 нм (20 мкм) имели близкие значения величины удельного потока J.

12_07_ris_02

Далее эксперимент проводился в среде с активным илом с дозой 6 г/л, при этом каждая из мембран тестировалась при различных значениях давления в течение 18 часов. Результаты этого эксперимента приведены на рис. 2, б. В среде с активным илом величина удельного потока J для мембран 300 нм (15 мкм) и 800 нм (10–15 мкм) была практически одинаковой, но по сравнению с опытом, проведенным в дистиллированной воде, она уменьшилась в 10–12 раз. Для мембран с меньшими порами величина J снизилась лишь в 1,5 раза. После того, как в среде с активным илом проницаемость мембран снизилась более чем на 10%, проводилась химическая промывка мембран и вновь тестирование на дистиллированной воде (рис. 2, в).

12_07_ris_03-04

Мембраны 300 нм (15 мкм) и 800 нм (10–15 мкм) после химической промывки не восстановили величину удельного потока. У остальных мембран величина J была практически восстановлена до первоначального значения, а для мембраны 80 нм она стала даже выше исходной величины. Общее сравнение работы мембран при давлении –0,3 бар приведено на рис. 3. Для мембран 200 нм (20 мкм) и 200 нм (40 мкм) влияния толщины активного слоя на величину удельного потока в исследуемых условиях обнаружено не было.

Анализ полученных результатов испытаний показывает, что для работы в среде с активным илом наиболее подходят керамические мембраны с размером пор 200 нм, которые имеют достаточную величину Jи работают более стабильно, чем мембраны с бльшими размерами пор; рекомендуемое рабочее давление при фильтровании составляет не менее –0,3 бар. Для последующих лабораторных и опытно-промышленных испытаний был выбран именно этот тип мембран.

Кроме плоских керамических мембран использовался также модуль с трубчатыми керамическими мембранами РХТУ им. Д. И. Менделеева (рис. 4), имеющими площадь поверхности фильтрования 0,1 м2. Материал данных мембран с размером пор 200 нм аналогичен материалу мембран «ItN Nanovation» [3].

12_07_ris_05

Модуль в лабораторных условиях работал в следующем режиме: фильтрация в течение 20 мин при постоянном трансмембранном давлении 0,45 бар; очистка воздухом изнутри в течение 10 мин при давлении 1 бар; доза ила в системе 6 г/л. При установленных технологических параметрах промывка мембран водой снаружи с целью их очистки требовалась через 7–8 суток работы аппарата после падения величины удельного потока на 25%; после промывки производительность мембран восстанавливалась. Работа исследуемого мембранного модуля представлена на рис. 5. Следует отметить, что исследуемый модуль при выбранных условиях эксплуатации работал стабильно в течение времени проведения эксперимента, которое составило три месяца.

Выводы

В результате проведенной серии экспериментов установлено, что для работы в мембранном биореакторе в качестве погружных модулей можно рекомендовать керамические мембраны с размером пор 200 нм, при этом трансмембранное давление должно быть не менее –0,3 бар.

Список цитируемой литературы

  1. Borchmann A., Rosenwinkel K.-H., Gubanov L. N., Katraeva I. V. Einbindung der Membrantechnik in die Abwasserreinigung mittels Anaerobtechnik // Statusseminar Membrantechnik:10. Hannoversche Industrieabwasser Tagung (HIT). – Hannover, 2007. Heft 139.
  2. Melin T., Rautenbach R. Membranverfahren. Grundlagen der Modul- und Anlagenauslegung. – Springer, 2006.
  3. Губанов Л. Н., Катраева И. В., Колпаков М. В. и др. Очистка сточных вод птицефабрик с применением биомембранных технологий // Приволжский научный журнал. 2010. № 4.
 

Российская ассоциация водоснабжения и водоотведения

Banner konferentciia itog 200x100

VAK2

Трубопроводная арматура АБРАДОКС, АБРА, ABRADOX, ABRA

Авторизация

Внимание! Рекомендуется просматривать сайт максимально свежими версиями браузеров. Некоторые устаревшие версии (IE 8) не смогут корректно скачать материалы номеров журнала.