№7|2011

ОБРАБОТКА ОСАДКОВ СТОЧНЫХ ВОД

bbk 000000

УДК 628.336.429:504.009

Керин А. С., Сидоров С. М., Соколова Е. В.

Применение установки «УГОС-110» в технологических процессах обработки осадков сточных вод

Аннотация

Приведены результаты исследований по изучению возможности применения установки «УГОС-110» для повышения эффективности обработки избыточного активного ила в технологических схемах очистки бытовых сточных вод. Обработке подвергался неуплотненный активный ил из вторичных отстойников. В результате исследований установлено, что применение оборудования «УГОС-110» наиболее целесообразно на очистных сооружениях биологической очистки хозяйственно-бытовых сточных вод производительностью до 3000 м3/сут. Это позволит повысить степень обезвоживания осадков, сократить расход флокулянта, снизить затраты на оборудование.

Ключевые слова

, , , , , ,

 

Скачать статью в журнальной верстке (PDF)

В настоящее время проблема обработки осадков сточных вод на очистных сооружениях является одной из наиболее актуальных. Выбор метода обработки осадков и необходимого состава сооружений и оборудования зависит от: химического состава и количества сточных вод, подаваемых на очистные сооружения; принятой технологии их очистки; эффективности работы водоочистных сооружений; объема, водоотдающих и физико-химических свойств образующихся осадков.

При одинаковой производительности однотипных очистных сооружений, в зависимости от состава подаваемых на очистку сточных вод, объем образующегося осадка и его технологические свойства могут значительно отличаться. Техническая надежность работы комплексов обработки осадков зависит от правильно определенных и обоснованных технологических стадий и параметров обработки для конкретных условий очистных сооружений, состава применяемых технологических аппаратов и оборудования.

В настоящее время при проектировании или на стадии модернизации существующих очистных сооружений имеется тенденция к изменению технологии очистки хозяйственно-бытовых и производственных сточных вод, содержащих органические загрязнения. Изменения в ряде случаев заключаются в исключении первичных отстойников на стадии предварительной механической очистки сточных вод. Технологическая схема обработки воды включает следующие основные стадии: механическую очистку на решетках, песколовках, сетчатых процеживателях; биологическую очистку в аэрационных сооружениях с последующим отделением из очищаемой воды активного ила во вторичных отстойниках или в мембранных биореакторах. При этом образуется только один вид осадка, подлежащий последующему обезвоживанию, – избыточный активный ил.

Объем образующегося избыточного активного ила в зависимости от состава сточных вод, подаваемых на очистку (в первую очередь по содержанию взвешенных веществ и БПК), и принятой технологии их обработки может составлять 1–4% объема очищаемых сточных вод. Влажность избыточного активного ила может изменяться в диапазоне 99,3–99,8%. Для дегельминтизации осадков в настоящее время находят применение термические, химические и биологические методы.

Установка для гидродинамической обработки осадков сточных вод «УГОС-110» (далее – ГД-установка) разработана и изготовлена ООО «ГИДРОМАШ ЭКОЛОГИЯ» (г. Нижний Новгород). Принцип работы установки – комплексное воздействие на подаваемый осадок. Включает сочетание диссипативного разогрева при сдвиговом деформировании и гидродинамической кавитации. Указанное комплексное воздействие обеспечивает разрушение структуры осадка за счет деструкции клеток микроорганизмов с одновременным обеззараживанием от яиц гельминтов.

07_13_ris_01

Гидравлическая производительность установки – до 50 м3/сут по исходному осадку; установленная мощность – 11 кВт; масса – 110 кг; частота вращения рабочего органа – 3000 мин–1. Схема реактора ГД-установки представлена на рис. 1, технологическая схема установки – на рис. 2.

07_13_ris_02

Реактор ГД-установки состоит из разъемного статора 1 цилиндрической формы, образующего полость, в которой имеются входное 2 и выходное 3 отверстия, там же размещается ротор 4, закрепленный на валу 5. Вал приводится во вращение электродвигателем. На обеих поверхностях ротора концентрические пазы 6 имеют профиль треугольника с внутренним углом . Концентрические пазы на поверхности ротора формируют между собой выступы 7. На дисках статора также имеются концентрические пазы 8, образующие между собой выступы 9. Профиль концентрических пазов ротора и статора идентичен, пазы ротора сопрягаются с выступами статора, а пазы статора сопрягаются с выступами ротора с осевым зазором. Между наибольшим по радиусу концентрическим пазом и краем ротора расположены средства турбулизации потока обрабатываемой среды, представляющие собой отверстия 10 на роторе и отверстия 11 на статоре, способные совмещаться при вращении ротора. Между наименьшим по радиусу концентрическим пазом и центром ротора расположены отверстия 12, являющиеся средствами перемешивания.

Обрабатываемый избыточный активный ил через входное отверстие 2 подается под некоторым давлением в реактор, где он попадает на ступицу ротора и отбрасывается центробежными силами от центра вращения ротора к его периферии. Посредством отверстий 12 жидкость заполняет реактор, интенсивно перемешивается
и поступает в осевые зазоры между пазами и выступами дисков ротора и статора. Благодаря силам смачиваемости между поверхностью реактора и обрабатываемой жидкостью последняя приходит во вращение, увлекается пазами и выступами ротора и удерживается пазами и выступами статора.

При движении жидкости в осевых зазорах возникают напряжения растяжения, сдвига, формируется плоский поток вращающейся жидкости, натекающий и отрывающийся от поверхности пазов и выступов, испытывающий при этом боковые перепады давления. По мере натекания струи на выступ боковое давление повышается, а по мере стекания струи с выступа – понижается. Пройдя последний выступ, поток подвергается воздействию средств турбулизации, расположенных между наибольшим по диаметру концентрическим пазом и краем ротора, и выталкивается из реактора через выходное отверстие 3.

При треугольном профиле концентрических пазов с внутренним углом 40 ≤  ≤ 80, зависящим от глубины паза и диаметра ротора, в установившемся режиме реактора осевой зазор является отрезком волновой системы с условиями, заданными на конце. Возбуждение перекрывающимися отверстиями колебаний на одном конце потока с частотой, близкой к общей частоте, излучаемой реактором, многократно интенсифицирует процесс обработки.

Таким образом, осуществляется комплексное воздействие на обрабатываемый ил: гидромеханическое – перед входом в осевой зазор, кавитационное – в осевом зазоре, и импульсное – с помощью средств турбулизации потока.

Экспериментальные исследования проводились с использованием гидродинамического реактора с диаметром ротора 310 мм, имеющим профиль концентрических пазов в форме равностороннего треугольника ( = 60) с высотой h = 5 мм и зазором d ≤ 1 мм. Частота вращения ротора достигала 2950 мин–1 при производительности по водной фазе 1 м3/ч.

С целью определения технологической эффективности применения установки «УГОС-110» при обработке осадков сточных вод специалистами ООО «ГИДРОМАШ ЭКОЛОГИЯ» и ОАО «НИИ ВОДГЕО» были проведены комплексные лабораторные исследования с активным илом действующих очистных сооружений. Обработке подвергался избыточный активный ил, образующийся в процессе биологической очистки хозяйственно-бытовых сточных вод. Технологические испытания проводились на очистных сооружениях хозяйственно-бытовой канализации, расположенных в Домодедовском районе Московской области и на экспериментальной базе НИИ ВОДГЕО, в феврале–апреле 2011 г.

Задачей технологических испытаний являлось определение влияния гидродинамической обработки активного ила на эффективность следующих процессов: реагентной очистки ила рабочим раствором флокулянта на стадии подготовки к обезвоживанию; уплотнения активного ила и его обезвоживания применительно к установкам с мешочными фильтрами и ленточными фильтр-прессами; обеззараживания от яиц гельминтов. Технологические испытания выполнялись параллельно как с образцами активного ила без предварительной обработки (контрольные пробы), так и с образцами ила после его обработки на установке «УГОС-110».

Процесс уплотнения предварительно обработанного на ГД-установке активного ила по сравнению с контрольной пробой позволяет сократить объем ила в среднем в 1,6–2,1 раза, при этом влажность уплотненного ила может снижаться с 98,8–99,2 до 97,7–98,1% при исходной влажности активного ила 99,7–99,8%. При предварительной обработке ила на ГД-установке также снижается продолжительность уплотнения ила и соответственно требуемый рабочий объем уплотнителя (табл. 1). При этом анализ качественных и количественных характеристик иловой воды позволяет ожидать положительного воздействия на эффективность работы блока биологической очистки при ее отведении на очистные сооружения.

07_13_tabl_01

Предварительная ГД-обработка активного ила позволяет повысить его водоотдающие свойства. Это подтверждается результатами исследований по реагентной очистке рабочим раствором флокулянта необработанных и обработанных уплотненных проб ила на ГД-установке. При этом среднее значение рабочей дозы флокулянта составило: для уплотненного активного ила без предварительной ГД-обработки – 5,6 кг/т сухого вещества ила; для уплотненного ила с предварительной ГД-обработкой – 4,2 кг/т.

При выполнении исследований наибольшая технологическая эффективность реагентной обработки уплотненного ила была достигнута при использовании катионных флокулянтов «Праестол-650 BS» и «Зетаг-8120».

Результаты исследований по обезвоживанию неуплотненного активного ила на модели мешочного фильтра после ГД-обработки по сравнению с контрольной пробой ила с предварительным введением в пробы ила раствора флокулянта показали возможность повышения технологической эффективности процесса в результате предварительной ГД-обработки ила. При этом обезвоживание исходного ила методом фильтрования после ГД-обработки позволяет снизить влажность ила с 99,84 до 97,8% при кратности объемного снижения 26, а без ГД-обработки в аналогичных условиях – с 99,79 до 98,2% при кратности объемного снижения 10,9. Снижение влажности отфильтрованного ила после ГД-обработки позволит уменьшить его объем и соответственно требуемое количество мешочных фильтров (табл. 2). Анализ качественных и количественных характеристик фильтрата позволяет ожидать положительного воздействия на эффективность работы блока биологической очистки при отведении фильтрата на очистные сооружения.

Результаты выполненных работ показали, что ГД-обработка ила с последующим его уплотнением не ухудшает технологические параметры обезвоживания уплотненного активного ила под действием сил гравитации и давления отжима на ленточном фильтр-прессе по сравнению с контрольной пробой без ГД-обработки. При этом уменьшение объема исходного ила после его ГД-обработки при предварительном уплотнении снижает его объем и позволяет сократить требуемое количество установок для его последующего механического обезвоживания. Одновременно происходит сокращение потребности в товарном флокулянте за счет снижения его рабочей дозы (табл. 3). Результаты выполненных ООО «ГИДРОМАШ ЭКОЛОГИЯ» испытаний по дегельминтизации осадка на установке «УГОС-110» позволяют сделать вывод, что обработка активного ила в гидродинамическом режиме обеспечит его санитарное обеззараживание за счет уничтожения яиц гельминтов.

07_13_tabl_02

Установлено, что для условий очистных сооружений, на которых были проведены испытания, количество загрязнений, дополнительно поступающих на сооружения биологической очистки с фильтратом от стадии обезвоживания избыточного активного ила, не превышает 2,5%, что находится в диапазоне, существенно меньшем, чем допустимое увеличение нагрузки (10–15%) без снижения эффективности работы сооружений. Положительное воздействие обработки активного ила на установке «УГОС-110» заключается в частичном разрушении бактериальных клеток с высвобождением ферментативных структур и увеличении их активности, активизации метаболизма целых клеток микроорганизмов и высвобождении ряда биологически активных соединений: витаминов, стероидов, биополимеров и пр. Косвенным подтверждением этого факта является незначительное содержание органических соединений, характеризуемых показателем БПК, а также аммонийного азота и фосфатов в пробе фильтрата от обезвоживания обработанного ила. Возврат иловой воды и (или) фильтрата на очистные сооружения не только не нарушит работу очистных сооружений, в частности блока биологической очистки, но и окажет положительное воздействие, степень которого можно оценить при достаточно длительной промышленной эксплуатации установки «УГОС».

07_13_tabl_03

На основании результатов технологических испытаний установки «УГОС-110» были выполнены предварительные технологические и технико-экономические расчеты сооружений по обработке осадков на ГД-установке с целью определения возможных областей ее применения на очистных сооружений производительностью 500, 3000 и 10 000 м3/сут сточных вод. Расчетные показатели, представленные в таблицах 1–3, являются прогнозируемыми, требующими уточнений для условий каждого конкретного объекта.

Выполненные работы позволили сделать вывод, что применение установок «УГОС-110» повышает эффективность обработки избыточного активного ила за счет улучшения его водоотдающих свойств, а также реагентной обработки активного ила, его уплотнения и обезвоживания методом фильтрования под действием сил гравитации. Технико-экономическими расчетами установлено, что использование такого оборудования наиболее целесообразно на очистных сооружениях биологической очистки хозяйственно-бытовых сточных вод производительностью до 3000 м3/сут. Не исключена также возможность применения установок на сооружениях производительностью 3000–10 000 м3/сут при условии выполнения предварительных технологических испытаний установки и технико-экономического обоснования данного метода обработки осадка для конкретных объектов.

В дальнейшем предполагается выполнить комплекс испытаний установки «УГОС-110» для обработки осадков на очистных сооружениях производственных сточных вод, содержащих органические загрязнения, в первую очередь на предприятиях пищевой промышленности (мясоперерабатывающие, молокоперерабатывающие заводы) и предприятиях по разведению птиц, свиней, крупного рогатого скота.

В настоящее время производителем оборудования проводятся изыскания по снижению энергопотребления оборудования установки «УГОС», а также подготовительные работы по испытанию и внедрению установок на очистных сооружениях хозяйственно-бытовых сточных вод в ряде регионов РФ.

Выводы

Использование установок «УГОС-110» повышает эффективность обработки избыточного активного ила за счет улучшения его водоотдающих свойств, а также технологическую эффективность реагентной обработки активного ила, его уплотнения и обезвоживания методом фильтрования под действием сил гравитации. Оборудование «УГОС-110» наиболее целесообразно применять на очистных сооружениях биологической очистки хозяйственно-бытовых сточных вод производительностью до 3000 м3/сут, а производительностью 3000–10 000 м3/сут возможно при условии проведения предварительных технологических испытаний установки и выполнения технико-экономических расчетов.

 

Список цитируемой литературы

  1. Туровский И. С. Осадки сточных вод. – М.: ДеЛи принт, 2008.
  2. Аксенов В. И., Гандурина Л. В., Керин А. С. и др. Водное хозяйство промышленных предприятий. Кн. 6. Флокулянты. Справ. пособие. – М.: Теплотехник, 2010.
  3. Керин А. С., Богатеев И. А., Логинова Я. В. Технология обработки осадков сооружений водоочистки малой производительности с применением установок с мешочными фильтрами // Обезвоживание. Реагенты. Техника. 2004. № 11–12.
  4. Керин А. С., Нечаев А. П. Ленточные фильтр-прессы и сетчатые сгустители в технологии обработки осадков. – Водоснабжение и сан. техника. 2005. № 5.
  5. Пат. 103800, РФ. МПК C 02 F 1/34. Гидродинамический реактор / Б. М. Посметный, С. М. Сидоров // Изобретения. Полезные модели. 2011. № 12.
  6. Заявка на пат. 2010125766, РФ. МПК C 02 F 11/00, C 02 F 11/12. Способ кондиционирования осадков сточных вод / С. М. Сидоров.
 

Российская ассоциация водоснабжения и водоотведения

Banner konferentciia itog 200x100

VAK2

Трубопроводная арматура АБРАДОКС, АБРА, ABRADOX, ABRA

Авторизация

Внимание! Рекомендуется просматривать сайт максимально свежими версиями браузеров. Некоторые устаревшие версии (IE 8) не смогут корректно скачать материалы номеров журнала.