№2|2014

WASTEWATER TREATMENT

bbk 000000

UDC 628.35.004.4

Noskova I. A., Bazhenov V. I., Epov A. N.

The use of simulation modeling packages for wastewater treatment technologies

Summary

The subjects of the study were: comparative analysis of software packages for simulation modeling of wastewater treatment processes to manage design and operation issues; and also assessment of basic data for the formation of mathematical model inputs. The basic parameters of the description of the most complicated ASM activated sludge models have been analyzed. The results of the studies are represented by the analysis of the examples: distribution of COD fractions under local conditions of Russia and some other countries; typical irregularity of wastewater flow and basic pollutants hourly input; design and measured oxygen uptake rate (OUR); model time calibration process, optimization of the denit­rification zone in aeration tank for MUCT process. The analysis of the advanced software defined GPS-X (Hydromantis, Canada) design software as the most complete and comprehensive product. The suggested technique includes a set of measures: determining COD fractionation with the use of OxiTop (WTW, Germany) analyzer; assessment of basic parameters of irregular basic pollution mass input; respirometry studies; statistic processing of data obtained at the facilities. In the process of simulation modeling the hydrodynamic structure of the wastewater treatment facilities appears as series-connected mixer chambers. The number of chambers is assigned depending on the length and width of the facility, flow velocity, mixing rate, availability of internal baffles, and also inner recycle streams. The simulation model provides for the optimization of the following parameters: zone ratio in the aeration tank, sludge age, dissolved oxygen concentration, recycle ratio values, as well as the parameters of the automatic control system.

Key words

, , , , ,

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe

REFERENCES

  1. Henze M., Gujer W., Takashi M., van Loosdrecht M. Activated sludge models ASM1, ASM2, ASM2d and ASM3. London, IWA Publ., 2000.
  2. Henze M., Armoes P., Lia-Kur-Iansen I., Arvan E. Ochistka stochnykh vod. Biologicheskie i khimicheskie protsessy [Wastewater treatment. Biological and chemical processes: Under the editorship of S. V. Kaliuzhnyi. Moscow, Mir Publ., 2004, 480 p.].
  3. Vavilin V. A., Vasil’ev V. B. Sravnitel’naia otsenka matematicheskikh modelei, primeniaemykh dlia raschetov aerotenkov [Comparative evaluation of mathematical models used in aeration tank designing]. Vodnye Resursy, 1982, no. 4, pp. 132–145. (In Russian).
  4. Shchetinin A. I., Esin M. A., Malbiev B. Iu., Regotun A. A. [Simulation of biochemical processes of wastewater treatment as a basis of WWTF’s retechnologization]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2010, no. 11, pp. 60–69. (In Russian).
  5. Trunov P. V., Lunin S. V., Chuev E. V., Pavlova V. Iu. [Enhancement of efficiency of biological removal of nitrogen and phosphorus compounds at wastewater treatment facilities]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2010, no. 9, pp. 4–7. (In Russian).
  6. Lunin S. V., Prokhorova I. V., Pavlova V. Iu. [Modernization and reconstruction of sewage treatment facilities of the Municipal Unitary Enterprise «Vodokanal» of the city-resort of Anapa].
  7. Vodosnabzhenie i Sanitarnaia Tekhnika, 2011, no. 9, p. 1, pp. 67–71. (In Russian). GPS-X Technical reference. Hydramantis, Inc. Versions: 5.0, 6.0. 2006, 301 p.; 2011, 350 p.
  8. Iakovlev S. V., Kariukhina T. A. Biokhimicheskie protsessy v ochistke stochnykh vod [Biochemical processes in wastewater treatment. Moscow, Stroiizdat Publ., 1980, 200 p.].
  9. Bazhenov V. I., Epov A. N., Noskova I. A. [Math modeling of wastewater treatment facilities]. Ekologicheskii Vestnik Rossii, 2011, no. 4, pp. 30–35; no. 5, pp. 38–42. (In Russian).

vstmag engfree 200x100 2

mvkniipr ru

Российская ассоциация водоснабжения и водоотведения

Конференция итог

ecw20 200 300

VAK2