№3|2017

ENVIRONMENTAL PROTECTION

bbk 000000

UDC 550.424:574

Boldyrev K. A., Utkin S. S., Kazakov S. V.

Specificities of predicting metal distribution between aqueous phase  and bottom sediments  (by the example of strontium and cesium radionuclides)

Summary

The basic provisions of the developed methodological approach to predicting the coefficient of Kd radionuclide distribution on the material of bottom sediments and suspended substances in water bodies are presented. As a tool for predicting Kd coefficient of me­tals under the conditions of the changing chemical composition of water the use of geochemical modelling was suggested. The basic approaches, models and results of predicting the values of Kd coefficient of metals in a reference water body (a surface water reservoir – radioactive waste storage) characterized by high pollution with 90Sr strontium and 137Cs radionuclides as well as by the intensive decrease of water mineralization are laid out. During the research the specific features of hydrochemical and hydrodynamic behavior of metals in the water body system as well as the methods of geochemical modeling were studied in detail. The geochemical thermodynamic model of metal sorption (by the example of 90Sr and 137Сs) by the suspended matter and bottom sediment layer in the model water reservoir was developed that could be considered as a basis for modeling different scenarios of the evolution of real polluted water reservoirs. The values of Kd coefficient for 90Sr and 137Сs at decreasing water mineralization were calculated. It was determined that Kd value is increasing while water mineralization is decreasing. The model can be used for predicting the rate of metal elimination from polluted water bodies in the process of self-purification.

Key words

, , , , ,

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe

REFERENCES

  1. Mueller B., Duffek A. Similar adsorption parameters for trace metals with different aquatic particles. Aquatic Geochemistry, 2001, v. 7, pp. 107–126.
  2. Pivovarov S. A. Fiziko-khimicheskoe modelirovanie povedeniia tiazhelykh metallov (Si, Zn, Cd) v prirodnykh vodakh: kompleksy v rastvore, adsorbtsiia, ionnyi obmen, transportnye iavleniia [Physical and chemical modeling of heavy metals behavior (Cu, Zn, Cd) in natural water: complexes in solutions, adsorption, ion exchange, transport phenomena. Ph. D. thesis in Chemistry. Moscow, MGU Publ., 2003, 137 p.].
  3. Lipatnikova O. A. Eksperimental’noe issledovanie i termodinamicheskoe modelirovanie form nakhozhdeniia mikroelementov v donnykh otlozheniiakh Ivan’kovskogo vodokhranilishcha [Experimental study and thermodynamic modeling of microelement forms present in bottom sediments of the Ivan’kovskoe water reservoir. Ph. D. thesis in Geology and Mineralogy. Moscow, 2011, 130 p.].
  4. Lipatnikova O. A. [Thermodynamic model of heavy metal behavior in eutrophicated deposits]. Proceedings of «Current status of geosciences» International Conference dedicated to the memory of Viktor Efimovich Khain. Moscow, February 1–4, 2011. (In Russian).
  5. Sokolova O. V., Shestakova T. V., Grichuk D. V., Shvarov Iu. V. [Thermodynamic modeling of heavy metal forms in the «water-bottom sediments» system at auto pollution]. Vestnik Moskovskogo Universiteta. Ser. 4. Geologiia, 2006, no. 3, pp. 36–45. (In Russian).
  6. Sokolova O. V. Eksperimental’noe issledovanie i termodinamicheskoe modelirovanie migratsii tiazhelykh metallov v sisteme «voda – donnye otlozheniia» v zone antropogennogo vozdeistviia [Experimental study and thermodynamic modeling of heavy metal migration in the «water-bottom sediments» system in the anthropogenic impact zone. Ph. D. thesis in Engineering science. Moscow, 2008, 188 p.].
  7. Bezzaponnaia O. V. Prognoz soderzhaniia soedinenii tiazhelykh metallov v poverkhnostnykh vodnykh ob”ektakh [Prediction of the concentration of heavy metal compounds in surface water bodies. Ph. D. thesis in Engineering science. Ekaterinburg, 2004, 162 p.].
  8. Sozdanie metodologii eksperimental’nogo i naturnogo izucheniia protsessov akkumuliatsii i vynosa tiazhelykh metallov v donnykh otlozheniiakh vodokhranilishch i ozer [Development of the methodology of experimental and full-scale studies of the processes of heavy metal accumulation and release in bottom sediments of water reservoirs and lakes. R&D report. Moscow, «DAR/VODGEO» CJSC Publ., 2014].
  9. Skotnikova O. G., Fesenko S. V. [Mathematical model of radionuclides migration in a standing water body]. Radiatsionnaia Bezopasnost’ i Zashchita AES, Moscow, Energoizdat Publ., 1986, issue 10, pp. 117–122. (In Russian).
  10. Hakanson L., Brittain J. E., Monte L, Heling R., Bergstrom U. Modelling of radiocaesium in lakes – the VAMP model. Environmental Radioactivity, 1996, v. 33, no. 3, pp. 255–308.
  11. Heling R. LAKECO, the ecological consequences of an accidental release of radionuclides on a lake ecosystem and it integration into the real-time-on-line decision support system for the off-site Emergency Management following a Nuclear Accident (RODOS). KEMA report Nr. 40352-NUC 93-5852, 1994.
  12. Kroot M. P. J. M. Behavior of radionuclides. Part of the issue «Description of the modifications of the model IMPAQT». T740.01. Delft Hydraulics Delft, 1992.
  13. Monte L., Fratarcangeli F., Pompei S., Quaggia S., Andres G. A predictive model for the behaviour of dissolved radioactive substances in stratified lakes. Environmental Radioactivity, 1991, no. 13, pp. 297–308.
  14. Kazakov S. V., Utkin S. S. Podkhody i printsipy radiatsionnoi zashchity vodnykh ob”ektov [Approaches and principles of radiological protection of water bodies. Moscow, Nauka Publ., 2008, 318 p.].
  15. Tessier A., Campbell H. G., Bisson M. Sequential extraction procedure for the speciationof particulate trace metals. Analytical Chemistry, 1979, v. 51, no. 7, pp. 844–851.
  16. Syrovetnik K. Long-term metal retention processes in a peat bog: field studies, data and modeling. Doctoral thesis. Stockholm, Sweden, Department of Chemical Engineering and Technology Royal Institute of Technology, 2005, 86 p.
  17. Bradbury M. H., Baeyens B. A generalised sorption model for the concentration dependent uptake of caesium by argillaceous rocks. Journal of Contaminant Hydrology, 2000, no. 42, pp. 141–163.
  18. Brouwer E., Baeyens B., Maes A., Cremers A. Cesium and rubidium ion equilibria in illite clay. Journal of Physical Chemistry, 1983, no. 87, pp. 1213–1219.
  19. Generic models for use in assessing the impact of discharges of radioactive substances to the environment. Safety Report Series no. 19. Vienna, IAEA, 2001.
  20. Metodika razrabotki normativov dopustimykh sbrosov radioaktivnykh veshchestv v vodnye ob”ekty (DS-2010) [Methods of developing maximum permissible limits of radioactive substances discharge into water bodies (DS-2010). Moscow, Federal’naia Sluzhba po Ekologicheskomu, Tekhnologicheskomu i Atomnomu Nadzoru Publ., 2010].

vstmag engfree 200x100 2

mvkniipr ru