10-2016

Number 10 / 2016

To download all number in format PDF (in Russian)The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe

Number maintenance (pdf) (doc)

Number abstract (doc)

Literature lists to articles (doc)


 

№10|2016

РОССИЙСКАЯ АССОЦИАЦИЯ ВОДОСНАБЖЕНИЯ И ВОДООТВЕДЕНИЯ

bbk 000000

УДК

IX Конференция водоканалов России

Аннотация

В Томской области завершила работу IX Конференция водоканалов России. В мероприятии приняли участие 300 человек из 60 субъектов РФ, включая представителей Совета Федерации, Минстроя России, ФАС России, территориальных органов законодательной и исполнительной власти, а также экспертных организаций отрасли ЖКХ и профильных предприятий всех федеральных округов.


 

№10|2016

DRINKING WATER SUPPLY

bbk 000000

UDC 628.161.3

Samburskii G. A., Pestov S. M., Plitman S. I., Tulakin A. V., Ampleeva G. P., Tsyplakova G. V., Koshenkov V. N.

On some problems in chemical treatment of drinking water

Summary

Stated requirements to the delivery of information on the technology and raw material used in the production of chemicals will provide for minimizing the threat of toxic substances transfer to the treated water. In the process of comparative evaluation of chemicals it is recommended to pay attention to the substantial part of the expert report related to the maximum permissible dosages (concentrations) substantiated with account of the criteria of acceptable health hazard. The requirements of Methodology Guidelines 2.1.4.1060-01 shall be applied to synthetic polyelectrolytes specified not only in the document but also in other hygienic regulations. It is related to the product and its monomers.

Key words

, , , ,

 

№10|2016

DRINKING WATER SUPPLY

bbk 000000

UDC 628.161.3:546.711

Alekseeva L. P., Kourova L. V., Alekseev S. E.

Specific features of using chemical treatment in removing manganese compounds from underground water

Summary

Many underground water sources in Russia used for drinking water supply are characterized by increased concentrations of iron and manganese. There are different chemical and nonchemical methods of underground water treatment. In some cases nonchemical methods of treatment cannot provide for the required drinking water quality. However, the use of chemicals for removing iron and manganese compounds makes the process more complicated and increases the cost of water treatment; therefore their use shall be substantiated and approved by technological studies. The aspects of removing manganese compounds from underground water with the use of chemicals in cases when it was stated that nonchemical methods were not efficient are considered. The results of studies on determining the efficiency of using oxidants, alkalizing and coagulating chemicals are presented. When using oxidants in removing manganese from water the range of optimal chemical dosages is relatively small. The efficiency of manganese removal with the help of oxidants increases with the increase of water pH. For more integrated removal of oxidized manganese compounds and other pollutants from water flocculants can be used in the process of water clarification.

Key words

, , , , , , ,

 

№10|2016

WATER DISTRIBUTION NETWORKS

bbk 000000

UDC 628.32:62-192

GALPERIN E. M., Egorova Yu. A., Vas'kovskii A. V., Konevskii E. V.

Ways to improve the municipal water supply and distribution system

Summary

Simulation of all possible switch-overs in the municipal water distribution network caused by fault section cutoffs is practically unfeasible because of the large number of simulation cases. For the implementation a method of the distribution network dividing into separate districts (zones) with water flow rate measured at the input and outlet is suggested in a similar way to the elimination of leaks. Within the limits of each district including up to 50 km pipelines the search of the isolated sections becomes feasible. At that determi­ning the reliability of the water supply in each district as a part of the annual period when the customer receives water on a regular basis is possible. This is achieved with the use of Markov model for determining the period of the water distribution network being operational and in the state with simultaneously isolated sections. Then by hydraulic calculations the parameters of the network in non-operating conditions are determined; at that it is determined which parameters are related to the operation period with normal or lowered level of performance.

Key words

, , , , ,

 

№10|2016

WASTEWATER TREATMENT

bbk 000000

UDC 628.35:661.5

Nikolaev Yu. A., KOZLOV M. N., Gavrilin A. M., Kevbrina M. V., Pimenov N. V., Dorofeev A. G., Agaryov A. M. , Kallistova A. Iu.

Innovative energy efficient and resource-saving technology of removing ammonium from wastewater under anaerobic-anoxic conditions

Summary

The specialists of «Mosvodokanal» JSC have developed the technologies of ammonium oxidation under anoxic conditions: double-reactor for low temperatures and single-reactor for 30–37 °С. The technology for the operation at 10–25 °С is performed by bacteria (discovered in «Mosvodokanal» JSC) Сandidatus Аnammoxomicrobium moscowii, fixed to the bed. The rate of nitrogen removal is 50 g/(m3·day) of the reactor. The technology for warm wastewater treatment is performed by new bacteria Сandidatus Jettenia moscovie­nalis, fixed to the bed; the rate of nitrogen removal is 0.47 kg/(m3·day). The use of continuous flow and fixed feed increases the output of the reactor to 0.8 kg/(m3·day). Considering the high economic attractiveness and efficiency of the technology it could be expected that in the very near future the technology will become a frequent practice in wastewater treatment. For the development of the industrial-scale technology a grant was awarded within the frames of the Federal special-purpose program «Research and development for the priority orientations of the development of the scientific and technology sector in Russia for 2014–2020». The work is carried out in cooperation with Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences in Vinogradskii Institute of Microbiology business unit. A pilot plant with a 20 m3 reactor has been assembled, commissioned and operated at the Liuberetskie wastewater treatment facilities in Moscow of a treatment capacity of 20 m3/day of dewatering centrifuges filtrate.

Key words

, , , , ,

 

№10|2016

WASTEWATER TREATMENT

bbk 000000

UDC 628.33

Kevbrina M. V., Bogomolov M. V., Streltsov S. A., Belov N. A. , Kolbasov G. A.

Optimization of the mode of sludge removal from secondary settling tanks

Summary

In the process of upgrading the Moscow Novokur’ianovskie wastewater treatment facilities the scraper mechanism for activated sludge collection in 54 m diameter secondary settling tanks was replaced by SO-54 sludge sucker. Since it was the first experience of using sludge suckers at the Kur’ianovskie wastewater treatment facilities it was decided to carry out experimental tests of the operation of the secondary settling tanks equipped with sludge suckers as well as to develop and approbate the method of efficient activated sludge collection and removal from the bottom of the settling tanks. The operation of SO-54 sludge sucker in different modes was analyzed. It was shown that the design of the settling tank provided for the operation control by switching off and on the suction pipes of the upper level of the sludge suckers, i. e. eliminating the use of complicated instruments. Regulating the operation of the suction pipes of the upper level of the sludge suckers with a time switch provides for maintaining the optimal height of the activated sludge layer. Switching off the suction pipes of the upper level of the sludge suckers results in the increased concentration of recycle sludge. As a result of changing SO-54 sludge pump operation the dosage of recycle sludge was increased from 4.6 to 7.1 g/l eliminating the effluent quality in relation to suspended solids. This allowed reducing the recycle sludge volume subject to pumping to the aeration tanks, and reducing the number of operating pumps, and power saving.

Key words

, , , ,

 

№10|2016

POWER RESOURCES CONSERVATION

bbk 000000

UDC 628.356.14

Egorova Yu. A., Bazhenov V. I., Ustiuzhanin A. V., Rakitskii D. S., Levin D. I., Gordeev S. A., Nagornyi S. L., Petrov V. I.

Control valves in controlled pneumatic aeration processes

Summary

Through the 2013–2019 program of the Ministry of Energy and Public Utilities of the Samara Area «Samarskie Kommunal’nye Sistemy» Company has developed and has been successfully implementing the project of upgrading the municipal wastewater treatment facilities. In order to improve the energy efficiency retrofitting the systems of aeration and air distribution, equipping with compressors with controlled air supply to the aeration tanks within 45–100% range is envisaged. The general concept of control has been substantiated that includes complex level of process control and a two-loop automation scheme «aeration tank gate valve control – air blower group». The method of selecting control valves for the air supply control system for pneumatic wastewater aeration has been developed and substantiated. The method is based on the dependence of compressed media flow through the control valve stated in IEC 60534-2-1 International Standard. Under full-scale conditions with the use of precision equipment the flow characteristics of IRIS (DN300) control valve manufactured by Egger were studied. The average percentage error of the method was 6.79%. The method error does not matter much for the automated control since PID-control provides for supplying the required air amount according to the condition of compliance to О2, NH4 set values and current measurements of the supplied air amount. The classification of control valves is presented based on the type of the dependence of Kv/Kvs valve capacity coefficients from the rate of valve opening. Technological modes were identified: comparison of the theoretical and experimental flow characteristics of the control valve, pressure difference at the control valve, pressure difference in the «control valve – aerators» system, aerial environment temperature before the valve. The suggested method of the control valve calculation is a part of the «Energy efficiency of the controlled air supply to the aeration tanks» comprehensive mathematical model.

Key words

, , , , , , ,

 

№10|2016

НОВЫЕ ТЕХНОЛОГИИ И ОБОРУДОВАНИЕ

bbk 000000

УДК

Критерии и специфика подбора насосного оборудования для водопроводно-канализационного хозяйства


 

№10|2016

SEWERAGE NETWORKS

bbk 000000

UDC 628.23

Vasilyev V. M., Malkov A. V., PANKOVA G. A., Klementyev M. N.

Detecting the places of corrosive gas emissions from sewers to the surface and conditions of their formation

Summary

Corrosive gas emissions from sewers to the surface happen because of the excess pressure increase in the underroof and shaft space of the sewer. The causes of the pressure increase in the shaft space are considered. The gas amount changing during entering the shaft and removed from it depends on the wastewater flow rate, sewer filling (the height of the gas flow), hydraulic gradient of the sewer, formation of stagnation zones (sludge sedimentation), and temperature. Variation of these parameters and thus the location of corrosive gas emissions to the surface depend on a number of factors that can be divided into several groups: construction, hydraulic, geodesic, operation, random, climatic. Reducing the gas emissions from sewers is possible by: introduction of construction solutions for gaseous medium redistribution; elimination of air blocks, installation of purification filters; avoiding deviations from the design solutions ari­sing during the construction of deep sewers; proper management of wastewater flow at elevation differences; improvement of the sewer operation rules, severization of the requirements to the operating personnel qualification.

Key words

, , , , ,

 
<< Start < Prev 1 2 Next > End >>
Page 1 of 2

vstmag engfree 200x100 2

mvkniipr ru

Российская ассоциация водоснабжения и водоотведения

Конференция итог

ecw20 200 300

VAK2