bbk 000000

UDC 628.166.085

Vasiliak L. M., SMIRNOV A. D.

Potential use of ultrasound in water disinfection


Ultrasound has been used long enough in engineering and medicine for diagnostics, visualization of underwater objects, surface cleaning and other systems. Using ultrasonic disinfection as a main or additional technology is impractical because of the long exposure time, high energy consumption and lack of regulatory documents. To improve the efficiency of disinfection equipment the manufacturers suggest additional ultrasonic water treatment in combination with oxidi­zers and UV irradiation. The data on possible use of ultrasonics both as an additional disinfection method and method of improving the efficiency of traditional technology from the point of view of the concept of establishing numerous barriers during disinfection is presented. Different types of ultrasonic effect for using in water disinfection systems are considered. Ultrasound provides for the extremely low disinfection efficiency compared to other traditional technologies, therefore it is not used as an independent method. Ultrasonic water treatment improves the efficiency of oxidation technologies. Combined action of ultrasonics and UV irradiation does not have any synergistic effect. For natural water and effluent after treatment according to the operating standards the standard UV dosages are sufficient to ensure meeting the mic­robiological standards. Additional ultrasonic treatment is advisable under special conditions. Quartz sleeves can be well cleaned with mechanical systems and chemical wash which is used by all the world leading manufacturers. Due to the particular hazard of ultrasonic contact impact on humans the process of ultrasonic treatment shall completely eliminate such potential effect.

Key words

, , , , , ,

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe


  1. Ul’trafioletovye tekhnologii v sovremennom mire [Ultraviolet irradiation technologies in the present-day world: Multi-author book under the editorship of F. V. Karmazinov, S. V. Kostiuchenko, N. N. Kudriavtsev, S. V. Khramenkov. Dolgoprudnyi, Intellekt Publishing House, 2012, 392 p.].
  2. Ul’trazvuk [Ultrasonics. Encyclopedia: under the editorship of I. P. Goliamina. Moscow, Sovetskaia Entsiklopediia Publ., 1979, 400 p.].
  3. Agranat B. A., Dubrovin M. N., Khavskii N. N., Eskin G. I. Osnovy fiziki i tekhniki ul’trazvuka [The rudiments of ultrasonic physics and technique. Moscow, Vysshaia Shkola Publ., 1987, 352 p.].
  4. Abramov O. V., Khorbenko I. G., Shvegla Sh. Ul’trazvukovaia obrabotka materialov [Ultrasonic treatment of materials. Moscow, Mashinostroenie Publ., 1984, 280 p.].
  5. El’piner I. E. Ul’trazvuk. Fiziko-khimicheskoe i biologicheskoe deistvie [Ultrasound. Physical, chemical and biological effect. Moscow, Nauka Publ., 1963, 420 p.].
  6. Frizzell L. A. Biological effects of acoustic cavitation, in ultrasound: Its chemical, physical and biological effects. Suslick K. S. (Ed.). New York, VCH Publ., 1988, pp. 287–303.
  7. Mason T. J., Joyce E., Phull S. S., Lorimer J. P. Potential uses of ultrasound in the biological decontamination of water. Ultrasonics Sonochemistry, 2003, v. 10, pp. 319–324.
  8. Madge B. A., Jensen J. N. Disinfection of wastewater using a 20-kHz ultrasound unit. Water Environ Research, 2002, v. 74, no. 2, pp. 159–169.
  9. Blume T., Neis U. Improved waste water disinfection by ultrasonic pre-treatment. Ultrasonics Sonochemistry, 2004, v. 11, no. 5, pp. 333–336.
  10. Blume T., Martnez I., Neis U. Wastewater disinfection using ultrasound and UV light. TU Hamburg-Harburg Reports on Sanitary Engineering, 2002, v. 35, pp. 117–128.
  11. Hua I., Thomson J. E. Inactivaton of Escherichia coli by sonication at discrete ultrasonic frequencies. Water Research, 2000, v. 34, no. 15, pp. 3888–3893.
  12. Blume T., Neis U. Improved waste water disinfection by ultrasonic pre-treatment. Ultrasonics Sonochemistry, 2004, v. 11, no. 5, pp. 333–336.
  13. Blume T., Neis U. Improving chlorine disinfection of wastewater by ultrasound application. Water Science and Technology, 2005, v. 52, no. 10–11, pp. 139–144.
  14. Duckhouse H., Mason T. J., Phull S. S., Lorimer J. P. The effect of sonication on microbial disinfection using hypochlorite. Ultrasonics Sonochemistry, 2004, v. 11, no. 3–4, pp. 173–176.
  15. Rodgers S. L., Ryser E. T. Reduction of microbial pathogens during apple cider production using sodium hypochlorite, copper ion, and sonication. Journal of Food Protection, 2004, v. 67, no. 4, pp. 767–771.
  16. Hua I., Hoffmann M. R. Optimization of ultrasonic irradiation as an advanced oxidation technology. Environmental Science Technology, 1997, v. 31, pp. 2237–2243.
  17. Jyoti K. K., Pandit A. B. Hybrid cavitation methods for water disinfection: simultaneous use of chemicals with cavitation. Ultrasonics Sonochemistry, 2003, v. 10, no. 4–5, pp. 255–264.
  18. Dadjour M. F., Ogino C., Matsumura S., Nakamura S., Shimizu N. Disinfection of Legionella pneumophila by ultrasonic treatment with TiO2. Water Research, 2006, v. 40, no. 6, pp. 1137–1142.
  19. Fujishima A., Rao T. N., Tryk D. A. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobio­logy C: Photochemistry Reviews, 2000, v. 1, pp. 1–21.
  20. Chen D., Li F., Ray A. K. Effect of mass transfer and catalyst layer thickness on photocatalytic reaction. AIChE Journal, 2000, v. 46, no. 5, pp. 1034–1045.
  21. Ul’ianov A. N. [The use of ultraviolet irradiation in combination with physical processes in water treatment at small communities]. Vodoochistka, 2007, no. 4, pp. 6–9. (In Russian).
  22. http://www.svarog-uv.ru/ (accessed August 12, 2014).
  23. http://www.aqua-tech.dk/uploads/images/Billeder/Geunbeck/Grunbeck_catalogue_UK.pdf (accessed August 12, 2014).

mvkniipr ru 

Российская ассоциация водоснабжения и водоотведения

WST19 200x300

Конференция итог