№9-1|2011

INNOVATION OF WATER SECTOR

bbk 000000

UDC 628.31:577.472

KOZLOV M. N., Rubin A. B., Shchegolkova N. M., Matorin D. N., Shashkina P. S., Osipov V. A.

Fluorescence Methods of Monitoring the Process of Obtaining the Biomass from Microalgae

Summary

The development of domestic wastewater treatment technologies with the use of photoautotrophs up to the present moment was restrained by the lack of methods of processing the biomass obtained. In recent years there has been an active development of such technologies. The advantages of microalgae over the other sources of biomass are enormous: the highest productivity and the capability to treat water for biogenic elements up to the quality of the cleanest water bodies. Specialists of the Moscow State Unitary Enterprise Mosvodokanal and M. V. Lomonosov Moscow State University have studied the process of obtaining the microalgae biomass on wastewater using the up-to-date fluorescence methods. The dependence of chlorophyll a and algae biomass on the fluorescence index F0 and the biomass increment on the Fv/Fm. parameter has been detected in the laboratory photobioreactor.

Key words

, , , , ,

 

Download (PDF)

 

SPISOK LITERATURY

  1. Benemann J. R. Biofixation of CO2 and greenhouse gas abatement with microalgae – technology roadmap: Report № 7010000926 prepared for the U.S. Department of Energy National energy technology laboratory, 2003.
  2. Shchegol'kova N. M., Moizhes O. V., Shashkina P. S. Fotobioreaktor dlia ochistki stochnoi vody ot biogennykh elementov i obezzarazhivaniia // Voda: khimiia i ekologiia. 2010. № 2.
  3. Chen P., Zhou Q., Paing J., et al. Nutrient removal by the integrated use of high rate algal ponds and macrophyte systems in China // Water Science & Technology. 2003. 48 (2).
  4. Eisenberg D. M., Koopman B. L., Benemann J. R., Oswald W. J. Algal bioflocculation and energy conservation in microalgae sewage ponds // Bioengineering and Biotechnology. 1981. № 11.
  5. Weissman J. C., Goebel R. P., Benemann J. R. Photobioreactor design: comparison of open ponds and tubular reactors // Bioengineering and Biotechnology. 1988. № 31.
  6. GOST 17.1.4.02-90. Voda. Metodika spektrofotometricheskogo opredeleniia khlorofilla «a».
  7. Falkowski P. G., Raven J. Aquatic Photosynthesis. – Oxford, Blackwell, 1997.
  8. Matorin D. N., Osipov V. A., Iakovleva O. V., Pogosian S. I. Opredelenie sostoianiia rastenii i vodoroslei po fluorestsentsii khlorofilla: Uchebno-metodicheskoe posobie. – M.: MGU. Maks press, 2010.
  9. Matorin D. N., Venediktov P. S. Liuminestsentsiia khlorofilla v kul'turakh mikrovodoroslei i prirodnykh populiatsiiakh fitoplanktona / Itogi nauki i tekhniki. Cer. Biofizika. – M., VINITI, 1990. Vyp. 40.
  10. Matorin D. N. Ispol'zovanie fluorestsentnykh metodov izmereniia aktivnosti fotosistemy II pri biomonitoringe fitoplanktona // Biofizika. 2000. T. 45. № 3.
  11. Rubin A. B. Biofizika fotosinteza i metody ekologicheskogo monitoringa // Tekhnologiia zhivykh sistem. 2005. T. 2.
  12. Matorin D. N., Antal T. K., Ostrowska M., et al. Chlorophyll fluorometry as a method for studying light absorption by photosynthetic pigments in marine algae // Oceanologia. 2004. V. 46. № 4.
  13. Pat. 2354958, RF. MPK G 01 N 21/64. Sposob fluoromet¬richeskogo opredeleniia parametrov fotosinteza fototrofnykh organizmov, ustroistvo dlia ego osushchestvleniia i izmeritel'naia kamera / S. I. Pogosian, Iu. V. Kazimirko, D. N. Matorin i dr. / Izobreteniia. Poleznye modeli. 2009. № 13.

vstmag engfree 200x100 2

mvkniipr ru

Российская ассоциация водоснабжения и водоотведения

Конференция итог

ecw20 200 300

VAK2

Авторизация

Внимание! Рекомендуется просматривать сайт максимально свежими версиями браузеров. Некоторые устаревшие версии (IE 8) не смогут корректно скачать материалы номеров журнала.